N ovel unsymmetrical monofunctionalized lutetium and dysprosium bisphthalocyanines with seven crown-ether units and one hexyl hexanoate side-group

D idier Pernin, K laus H aberroth and J acques Simon

ESPCI-CNRS 10, rue Vauquelin, 75231 Paris Cedex 05, France

Abstract

The synthesis of novel lutetium and dysprosium bisphthalocyanines bearing seven 15-crown-5 ether units and one hexyl hexanoate side group is described.

Crown-ether substituted monophthalocyanines were first synthesized in $1986 .{ }^{1-3}$ Two types of complexes with alkali cations have been shown to occur; the smaller cations occupy the central cavity of the crown-ether whereas thebigger ones requiretwo complexing sites and hence form sandwich-type complexes. ${ }^{4-7}$ It has recently been demonstrated that 15 -crown-5 ether substituted bisphthalocyanines lead to a nonlinear ion complexation with $\mathrm{K}{ }^{+}$and Rb^{+}. ${ }^{5}$

The linking of phthalocyanine derivatives to the silica surface of the grid of a field effect transistor necessitates the presence of functional groups such as $\mathrm{RCO}_{2} \mathrm{H}$ or ROH on the macrocycle. This has been achieved with crown-ether substituted monophthalocyanines. ${ }^{8,9}$ The corresponding functionalized lutetium and dysprosium bisphthalocyanines $\mathbf{1 a}$ and $\mathbf{1 b}$ have been synthesized (Fig. 1).

Only a few studies have been devoted to unsymmetrical crown-ether phthalocyanine derivatives. ${ }^{4,10} \mathrm{U}$ nsymmetrical rareearth bisphthalocyanines have also been described in a few publications. ${ }^{1-14}$ In one case, a lutetium bisphthalocyanine with two different macrocycles has been reported. ${ }^{15}$
The synthesis of 15 -crown- 5 phthalonitrile $\mathbf{2}$ is described in the literature ${ }^{7,16}$ The phthalonitrile derivative 3 has been obtained in good yield starting from 2-methoxyphenol. ${ }^{8,17}$ The unsymmetrical metal free monophthalocyanine 4 is obtained by reacting 3 moles of $\mathbf{2}$ with one mole of $\mathbf{3}$ in refluxing hexanol in the presence of 1,8 -diazobicyclo[5.4.0]undec-7-ene (DBU) and MgCl .
The crude mixture containing from zero to four hexanoate chains is treated, after evaporation of hexanol, with a mixture of DMF-aqueous $\mathrm{HCI}(5 \%)$ at $60^{\circ} \mathrm{C}$ to give the corresponding metal free phthalocyanine derivatives. The DM F is evaporated and the pasty black-green residue is dissolved in chloroform and rinsed with distilled water. The mixture of the different crown-ether phthalocyanines is first purified by column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}\left(\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{eOH} ; 95: 5 ; \mathrm{v} / \mathrm{v}\right)$ (yield $\left.60 \%\right)$. The monofunctionalized phthalocyanine 4 is isolated via preparative thin layer chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3} ; \mathrm{CHCl}_{3}-\mathrm{MeOH} ; 97: 3 ;\right.$ v / v). Remaining impurities are removed by Soxhlet extraction with heptane and ethyl acetate. Final purification is achieved by reprecipitation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{A} \mathrm{COEt}$ mixtures (yield: 20\%). It is noteworthy that the ethyl ester has been totally transformed into the corresponding hexyl ester during the synthesis of the phthalocyanine in hexanol. Phthalocyanines with broken crown-ether units have been obtained as side-products. They become the major product if CaCl_{2} is used instead of $\mathrm{M} \mathrm{gCl}_{2}$. A cation assisted ring opening is therefore probable, leading to compound 6 .

Compound $\mathbf{4}$ is quantitatively transformed into the corresponding dianion using BuLi in DMSO. ${ }^{18}$ The addition of

Fig. 1 Chemical formula of functionalized crown-ether substituted lutetium and dysprosium bisphthalocyanines. For reasons of clarity, the bisphthalocyanine rings are drawn in an eclipsed geometry whereas a staggered one is the most probable.

2

3

4 ; $\mathrm{M}=\mathrm{H}_{2}$
5a; $\mathrm{M}=\mathrm{LuOAc}$
5b; M = DyOAc

Fig. 2 The various monosubstituted monophthalocyanine derivatives synthesized
$\mathrm{Lu}(\mathrm{OAc})_{3}\left[\right.$ or $\mathrm{Dy}(\mathrm{OAc})_{3}$] yields the substituted PcLuOAc 5a and $\operatorname{PcDyOA} \mathbf{5 b}$ after evaporation of DM SO and reprecipitation from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{AcOEt}(9: 1 ; \mathrm{v} / \mathrm{v}$) mixtures (yield: 90\%). 5a and $\mathbf{5 b}$ are stable in basic and neutral media but they partially give the corresponding bisphthalocyanines whenever the solids are heated over $50^{\circ} \mathrm{C}$.

6

The target unsymmetrical bisphthalocyanines $\mathbf{1 a}$ and $\mathbf{1 b}$ are obtained by heating under reflux $\mathbf{5 a}$ or $\mathbf{5 b}$ with the $\mathbf{1 5}$-crown-5 substituted phthalonitrile in hexanol in the presence of DBU. Purification is carried out by (i) filtration on alumina (ii) preparative TLC ($\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{eOH} ; 97.5: 2.5$; v/v) (iii) filtration on Bio-Beads $\mathrm{SX}-3 \dagger$ and (iv) reprecipitation from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{AcOEt}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (85:10:5; v/v/v) mixtures (yield: 10-20\%). Other attempts have been made to synthesize la by coupling two differently substituted phthalocyanines, ${ }^{19,20}$ but only very low yields were obtained.

All physical data for $\mathbf{1 a}, \mathbf{1 b}, \mathbf{4}$ and $\mathbf{5 a}$ are in good agreement with the proposed structures. Compound $\mathbf{5 b}$ has been used as a crude intermediate product in the synthesis of $\mathbf{1 b}$, without further characterization. The visible absorption properties of 1a and its reduced and oxidized forms are consistent with those previously described for related compounds. ${ }^{5}$
Work is in progress to study the complexation properties of la towards alkali and alkaline-earth cations to check whether or not nonlinear ion binding processes can take place.

Experimental

Physical data were obtained for compounds 1a, 1b, $\mathbf{2}$ and $\mathbf{3}$ as follows.

Characterization of la: neutral form: $\lambda_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1}$) 666 (159000), 603 (30000), 476 (39000), 367 (131000), 291 (102000); reduced form $\lambda_{\max }\left(\mathrm{CHCl}_{3}, 10 \%\right.$ hydrazine) $701(66000), 627(164000), 360(176000) ; ~ o x i d i z e d$ form $\lambda_{\max }\left(\mathrm{CHCl}_{3}+\right.$ bromine) 703 (54000), 498 (84000), 385 (116000), 336 (79000), 293 (120000); $v_{\text {max }}(\mathrm{K} \mathrm{Br} \mathrm{disc}) / \mathrm{cm}^{-1}$ 1730 (ester CO); $\delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \sim 5.10^{-3} \mathrm{M}\right) 0.8,1.2,1.5$, 1.8, 1.9, 2.1, 2.4, 3.4-4.3 (broad peaks) (the aromatic protons, $\mathrm{OCH}_{2}, \mathrm{OCH}_{3}$ linked to the macrocycle are not seen); MS (M ALDI-TOF) (high resolution) Found: m/z 2775 with correct isotopic distribution (calc. 2775.7) (Found: C, 57.37; H , 5.73; N, 7.54; Lu 5.70%. Calc. for $\mathrm{C}_{133} \mathrm{H}_{154} \mathrm{O}_{39} \mathrm{~N}_{16} \mathrm{~L}$ u: C, $57.55 ; \mathrm{H}, 5.59$; N, 8.07; Lu 6.30\%).

Characterization of $\mathbf{1 b}$: $v_{\text {max }}\left(\mathrm{K} \mathrm{Br}\right.$ disc)/ $/ \mathrm{cm}^{-1} 1725$ (ester CO); M S (M A LDI-TOF) (1st exp.) Found: m/z 2768.3 (calc. 2763.3) (The difference is due to calibration) (2nd exp.) (M A LDI-TOF, high resolution): 2764 (internal calibration) with correct isotopic distribution) (Found: C, 57.10; H, 5.66; N, 7.88; D y 6.10. Calc. for $\mathrm{C}_{133} \mathrm{H}_{154} \mathrm{O}_{39} \mathrm{~N}_{16} \mathrm{D}$ y: C, 57.81; H, 5.62; N, 8.11; Dy 5.88\%).

Characterization of 4: $\lambda_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{nm}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$ 700 (153000), 662 (124000), 644 (51000), 600 (27000), 422 (36 000), 349 (84000), 295 (56000); $v_{\text {max }}(\mathrm{K} \mathrm{Br} \mathrm{disc}) / \mathrm{cm}^{-1} 3386$ (br), 3296 (shp) (NH), 1731 (ester CO); $\delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right.$, $\left.\sim 3.10^{-3} \mathrm{M}, 50^{\circ} \mathrm{C}\right)-3.4(\mathrm{br}, 2 \mathrm{H}), 0.9(\mathrm{t}, 3 \mathrm{H}), 1.4(\mathrm{~m}, 6 \mathrm{H}), 1.8$ ($\mathrm{m}, 2 \mathrm{H}$), $1.9(\mathrm{~m}, 2 \mathrm{H}), 2(\mathrm{~m}, 2 \mathrm{H}), 2.3(\mathrm{~m}, 2 \mathrm{H}), 2.6(\mathrm{t}, 2 \mathrm{H}), 4$ (br, 24 H), 4.2 (t, 2 H), 4.3 (br, 12 H), 4.4 (s, 3 H), $4.5-4.6$ (br, 14 H), 8.0, 8.1, 8.2 (d, d, s, 8 H); M S (M ALDI-TOF) Found: m/z 1333.2 (calc. 1329.5) (calibration: see above). Peaks corresponding to $\mathrm{M}_{2}{ }^{+}$(2663.5) and $\mathrm{M}_{3}{ }^{+}$(3999.4) are also observed. M S Cl
\dagger Porous styrene-divinylbenzene copolymer with 3\% crosslinkage (exclusion limit range $=2000$ daltons for beads fully swollen in benzene).
(NH_{3}) 1329 with correct isotopic distribution (Found: $\mathrm{C}, 61.64$; $\mathrm{H}, 6.37 ; \mathrm{N}, 8.25$. Calc. for $\mathrm{C}_{69} \mathrm{H}_{84} \mathrm{O}_{19} \mathrm{~N}_{8} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 61.50 ; \mathrm{H}, 6.43$; $\mathrm{N}, 8.32 \%$).
Characterization of 5 a: neutral form; $\lambda_{\max }\left(\mathrm{CHCl}_{3}\right) 679$ (119000), 614 (23000), 356 (62000), 291 (40000); oxidized form $\lambda_{\text {max }}\left(\mathrm{CHCl}_{3}+\right.$ bromine $) 826(10000), 728(13000), 537$ (19000), 403 (22000), 355 (32000), 284 (47000); $v_{\text {max }}(\mathrm{K} \mathrm{Br}$ disc) $/ \mathrm{cm}^{-1} 1724$ (br, ester and acetate CO); $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}$, $\left.\mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}, \sim 5.10^{-3} \mathrm{~m}\right) 0.6$ (t), 1.1 (br), 1.4 (t$), 1.5$ (br), $1.7(\mathrm{t}), \sim 1.9,2.2(\mathrm{t}), 2.8(\mathrm{br}), 3.2(\mathrm{~s}), 3.6(\mathrm{br}), 3.9(\mathrm{~m}, \mathrm{br}), 4.2(\mathrm{br})$, 4.5 (br), 8.5-8.8 (br); M S (M ALDI-TOF) Found: m/z 1691 [calc. $1502.4+189.17=1691.6$ for s-PcLuX where X is one molecule coming from the matrix (α-cyano-4-hydroxycinnamic acid)] [Found: C, 52.11; H, 5.52; N, 6.98; Lu, 10.11. Calc. for $\mathrm{C}_{71} \mathrm{H}_{85} \mathrm{O}_{21} \mathrm{~N}_{8} \mathrm{Lu} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (the acetate moieties are included): C , 52.20; H, 5.74; N , 6.86; Lu, 10.71\%].

Acknowledgements

Mr Bolbach and Professor Tabet (UPM C, Paris) are gratefully acknowledged for the MALDI-TOF measurements. Mr K eyser (ICS-CNRS, Strasbourg) is thanked for the determination of the elemental analyses. M rs M orin (ENS, Paris) is thanked for the CI mass spectrometry determinations. Professor Silinsh is acknowledged for his help during his seventieth year.

References

1 A. R. K oray, V. Ahsen and Ö. Bekâroglu, J. Chem. Soc., Chem. Commun., 1986, 932.
2 N. K obayashi and Y. Nishiyama, J. Chem. Soc., Chem. Commun., 1986, 1462.
3 R. H endriks, O. E. Sielcken, W. D renth and R. J. M. N olte, J. Chem. Soc., C hem. Commun., 1986, 1464.
4 N. K obayashi, M. Togashi, T. Osa, K. Ishii, S. Yamauchi and H. Hino, J. A m. C hem. Soc., 1996, 118, 1073.

5 T. Toupance, V. A hsen and J. Simon, J. A m. Chem. Soc., 1994, 116, 5352.

6 O. E. Sielcken, M. M. Van Tilborg, M. F. M. Roks, R. Hendriks, W. Drenth and R . J. M . N olte, J. Am. C hem. Soc., 1987, 109, 4261.

7 N. K obayashi and A. B. P. Lever, J. Am. Chem. Soc., 1987, 109, 7433.

8 J. Vacus, G. M emetzidis, P. D oppelt and J. Simon, J. Chem. Soc., Chem. Commun., 1994, 697.
9 T. Thami, J. Simon, N. Jaffrezic, A. M aillard and S. Spirkovitch, Bull. Soc. Chim. Fr., 1996, 133, 759.
10 E. M usluoglu, A. Gürek, V. A hsen, A. Gül and Ö. Bekâroglu, C hem. Ber., 1992, 125, 2337.
11 Y. Liu, K. Shigehara, M. H ara and A. Yamada, J. Am. Chem. Soc., 1991, 113, 440.
12 N. I shikawa and Y. K aizu, C hem. Phys. Lett., 1993, 203, 472.
13 A. Pondaven, Y. Cozien and M. L'H er, N ew J. Chem., 1992, 16, 711.
14 F. Guyon, A. Pondaven, P. Guenot and M. L'H er, Inorg. Chem., 1994, 33, 4787.
15 L. G. Tomilova, Y. G. Gorbunova, M. L. Rodriguez-M endez and J. A. D e Saja, M endeleev C omm., 1994, 127.

16 V. A hsen, E. Y ilmazer, M. Ertas and Ö. Bekâroglu, J. Chem. Soc., D alton Trans., 1988, 401.
17 J. F. Van Der Pol, E. N eeleman, R . J. M. N olte, J. W. Zwikker and W. D renth, M akromol. C hem., 1989, 190, 2727.

18 N. B. Subbotin, L. G. Tomilova, N. A. Kostromina and E. A. Luk'yanets, J. Gen. C hem. U SSR, 1986, 345.
19 Y. Liu, K. Shigehara and A. Yamada, Bull. Chem. Soc. J pn., 1992, 65, 250.
20 D. Chabach, M. Tahiri, A. De Cian, J. Fischer, R. Weiss and M. El M alouli Bibout, J. A m. Chem. Soc., 1995, 117, 8548.

Paper 7/01305A
R eceived 10th M arch 1997
A ccepted 13th M arch 1997

